878. Thermodynamics of Ion Association. Part IX. ${ }^{1}$ Some Transition-metal Succinates.

By A. McAuley and G. H. Nancollas.

Abstract

E.m.f.s of cells of the type $\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{H}_{2} \mathrm{~A}, \mathrm{NaOH}, \mathrm{MCl}_{2}\right| \mathrm{AgCl} / \mathrm{Ag}$, where $\mathrm{H}_{2} \mathrm{~A}$ represents succinic acid, measured by a precision method at temperatures from 0° to 45°, are interpreted in terms of the formation of NiA, CoA, and MnA , and the corresponding hydrogen succinates, NiHA^{+}and MnHA^{+}. Preliminary pH measurements, in which a glass electrode was used, at a constant ionic strength $(0.2 \mathrm{~m})$ were used to identify the ion-pairs present in the solutions. $\Delta H, \Delta G, \Delta S$, and ΔC_{p} are evaluated for the reaction $\mathrm{M}^{2+}+$ $\mathrm{A}^{2-} \rightleftharpoons \mathrm{MA}$, and these are discussed.

Or the transition-metal dicarboxylates, the ion-pairs formed with the succinate ion involve the much less stable seven-membered ring. The smaller difference between the dissociation constants of succinic acid than between those of oxalic ${ }^{2}$ or malonic acid ${ }^{\mathbf{1}}$ increases the concentration of HA^{-}ions, and ion-pairs such as MHA^{+}have to be taken into account as well as MA when considering cells such as $\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{H}_{2} \mathrm{~A}, \mathrm{NaOH}, \mathrm{MCl}_{2}\right| \mathrm{AgCl} / \mathrm{Ag}$.

Experimental

"AnalaR" salts were used where available. Sodium perchlorate solutions were prepared from the recrystallised material and analysed by using an Amberlite IR-120 ion-exchange resin (H^{+}form).
pH measurements at constant ionic strength, both in the acid buffer and in the presence of manganese ions, were made with a glass electrode in a cell of the type

$$
\mathrm{Ag} / \mathrm{AgCl}, \mathrm{HCl}|g l a s s| \text { solution under study } \mid \text { sat. } \mathrm{KCl} \mid \text { calomel electrode }
$$

Glass electrodes were either commercial screened electrodes (E.I.L. type GG33), or were made from Corning 015 glass. The cell, incorporating Dunsmore and Speakman's ${ }^{3}$ reproducible liquid junction, was maintained at 25° in an oil-bath even when not in use to prevent fluctuating calomel electrode potentials. E.M.F. measurements were made with a Tinsley potentiometer and Vibron electrometer (E.I.L. model 33B) as a null indicator; readings were reproducible to $\pm 0.1 \mathrm{mv}$. Electrode systems were standardised with 0.01 m -hydrochloric acid $+0.09 \mathrm{~m}-$ potassium chloride which has a pH of $2 \cdot 078,{ }^{4}$ and with 0.05 m -potassium hydrogen phthalate ($\mathrm{pH}=4.005^{5}$) ; $\left[\mathrm{H}^{+}\right]$was obtained from $\mathrm{pH}\left(=-\log a_{\mathrm{H}^{+}}\right)$by using the mean activity data for hydrochloric acid given by Robinson and Stokes. ${ }^{6}$ The procedure consisted in determining the pH of solutions containing known concentrations of succinic acid, sodium hydroxide, and manganese chloride, with sufficient sodium perchlorate to maintain an ionic strength of 0.2 m .

For e.m.f. measurements with the cell

$$
\begin{equation*}
\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{H}_{2} \mathrm{~A}\left(m_{1}\right), \mathrm{NaOH}\left(m_{2}\right), \mathrm{MCl}_{2}\left(m_{3}\right)\right| \mathrm{AgCl} / \mathrm{Ag} \tag{1}
\end{equation*}
$$

The apparatus, standardisation of electrodes, and experimental technique have been described previously. ${ }^{7}$

Results and Discussion

E.m.f.s of cells (1) could not be interpreted in terms of only one complex MA and, in order to identify the other species present, pH measurements were made in solutions of constant ionic strength 0.2 m .

It was first necessary to obtain the dissociation constants, $k_{1}{ }^{1}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]$ and
${ }^{1}$ Part VIII, J., 1961, 4367.
${ }^{2}$ McAuley and Nancollas, J., 1961, 2215.
${ }^{3}$ Dunsmore and Speakman, Trans. Faraday Soc., 1954, 50, 236.
${ }^{4}$ Hitchcock and Taylor, J. Amer. Chem. Soc., 1938, 60, 2710.
${ }^{5}$ British Standard, 1647, 1950.
${ }^{6}$ Robinson and Stokes, " Electrolyte Solutions," Butterworths, London, 1955.
? Nair and Nancollas, J., 1958, 4144.
$k_{2}{ }^{1}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right] /\left[\mathrm{HA}^{-}\right]$, of succinic acid at this ionic strength, and pH measurements were made in mixtures of succinic acid, sodium hydroxide, and sodium perchlorate. A graphical solution similar to that described by Speakman ${ }^{8}$ was applied, leading to an equation $X=k_{1}{ }^{1} Y+k_{1}{ }^{1} k_{2}{ }^{1}$, where

$$
\begin{aligned}
X & =\left[\mathrm{H}^{+}\right]^{2}\left\{\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]\right\} /\left\{2\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]\right\} \\
Y & =\left[\mathrm{H}^{+}\right]\left\{\left[\mathrm{H}_{2} \mathrm{~A}\right]-\left[\mathrm{A}^{2-}\right]\right\} /\left\{2\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]\right\} .
\end{aligned}
$$

and
The results are summarised in Table 1 and X is plotted against Y in Fig. 1; the slope and intercept give $k_{1}{ }^{1}=1.38 \times 10^{-4}$ and $k_{2}{ }^{1}=6.9 \times 10^{-6}$.

In the concentration ranges used in this work, the complex species expected in solutions containing metal chloride, succinic acid, and sodium hydroxide are MA and MHA ${ }^{+}$. A comprehensive treatment at low concentration would involve equations for total metalion concentration $m_{3}=\left[\mathrm{M}^{2+}\right]+\left[\mathrm{MHA}^{+}\right]+[\mathrm{MA}]$, for total succinic acid concentration $m_{1}=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]+\left[\mathrm{A}^{2-}\right]+[\mathrm{MA}]+\left[\mathrm{MHA}^{+}\right]$, for electroneutrality $m_{2}+\left[\mathrm{H}^{+}\right]+$ $2\left[\mathrm{M}^{2+}\right]+\left[\mathrm{MHA}^{+}\right]=\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]+2 m_{3}$, and for the thermodynamic dissociation constants of succinic acid $k_{1}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right] \gamma_{1}^{2} /\left[\mathrm{H}_{2} \mathrm{~A}\right]$ and $k_{2}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right] \gamma_{2} /\left[\mathrm{HA}^{-}\right]$. The required association constants are $K=[\mathrm{MA}] /\left[\mathrm{M}^{2+}\right]\left[\mathrm{A}^{2-}\right] \gamma_{2}{ }^{2}, K_{1}=\left[\mathrm{MHA}^{+}\right] /\left[\mathrm{M}^{2+}\right]\left[\mathrm{HA}^{-}\right] \gamma_{2}$, and $I=3 m_{3}-m_{1}+4\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{H}_{2} \mathrm{~A}\right]+2\left[\mathrm{HA}^{-}\right]$.

Table 1.
Dissociation constants of succinic acid at $25^{\circ}, I=0 \cdot 2 \mathrm{M}$.

$10^{3} T_{\mathrm{A}} *$	$10^{3}\left[\mathrm{Na}^{+}\right]$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{4} X$	$10^{8} Y$	$10^{3} T_{\mathrm{A}}^{*}$	$10^{3}\left[\mathrm{Na}^{+}\right]$	$10^{4}\left[\mathrm{H}^{+}\right]$	$10^{4} X$	$10^{8} Y$
7.099	2.192	2.647	1.05	1.47	7.099	3.245	1.602	0.55	0.81
7.099	2.543	2.271	0.86	1.25	12.660	7.084	1.156	0.35	0.53
7.099	2.456	2.295	0.88	1.23	12.660	14.722	0.181	-0.036	0.045
7.099	2.731	2.064	0.76	1.11	12.660	20.543	0.0437	-0.072	0.008
			$*$	$T_{\mathrm{A}}=$ Total succinic acid concentration.					

At constant ionic strength, activity coefficients are omitted and the corresponding stability constants are written K^{1} and $K_{1}{ }^{1}$. pH measurements were made with manganese succinate over a range of concentration of metal ion and are summarised in Table 2.

Table 2.
Manganese succinate at $25^{\circ}, I==0 \cdot 2 \mathrm{M}\left(K_{1}{ }^{1}=5 \mathrm{l} . \mathrm{mole}^{-1}\right)$.

$10^{ \pm}\left[\mathrm{H}^{+}\right]$	$10^{3} m_{3}$	$10^{3} m_{1}$	$10^{3}\left[\mathrm{Na}^{+}\right]$	$10^{3}\left[\mathrm{HA}^{-}\right]$	$10^{3}\left[\mathrm{~A}^{2-}\right]$	$10^{3}[\mathrm{MA}]$	$10^{3}\left[\mathrm{MHA}^{+}\right]$	$K_{1}{ }^{1}$	K^{1}
1.308	18.310	$12 \cdot 660$	7.084	5.711	0.330	$0 \cdot 154$	$0 \cdot 536$	$5 \cdot 3$	26.5
$0 \cdot 2079$	$7 \cdot 324$	$12 \cdot 660$	14.772	7.744	$2 \cdot 809$	0.552	$0 \cdot 277$	$5 \cdot 5$	$30 \cdot 3$
0.2414	$18 \cdot 310$	$12 \cdot 660$	14.772	7.215	$2 \cdot 254$	1.214	0.595	$5 \cdot 0$	$32 \cdot 6$
$0 \cdot 2740$	36.620	12.660	14.772	$6 \cdot 566$	$1 \cdot 807$	1.710	1-149	$5 \cdot 2$	28.0
0.0566	18.310	$12 \cdot 660$	$20 \cdot 543$	$4 \cdot 076$	$5 \cdot 430$	$2 \cdot 642$	$0 \cdot 329$	$5 \cdot 3$	31.7
0.06528	36.620	$12 \cdot 660$	$20 \cdot 790$	$3 \cdot 562$	4-114	$4 \cdot 208$	0.591	$5 \cdot 2$	$32 \cdot 1$
Mean $K_{1}{ }^{1}=5 \cdot 1 . \quad$ Mean $K^{1}=30 \cdot 1$.									

Various values of $K_{1}{ }^{1}$ were inserted and a constant K^{1} was obtained over a 23 -fold variation in $\left[\mathrm{H}^{+}\right]$with $K_{1}{ }^{1}=5 \mathrm{l}$. mole ${ }^{-1}$ at $I=0 \cdot 2 \mathrm{~m}$. This provides confirmatory evidence that the second complex present in these solutions is MHA ${ }^{+}$.

Precise e.m.f. measurements at low concentrations were then made at each temperature and K was calculated, by means of a DEUCE electronic computer, for various values of K_{1} by successive approximations of I with the activity coefficient expression ${ }^{9}-\log \gamma_{2}=$ $A z^{2}\left[I^{\frac{1}{2}} /\left(1+I^{\frac{1}{2}}\right)-0 \cdot 2 I\right]$ and the thermodynamic dissociation constants of succinic acid determined by Pinching and Bates. ${ }^{10} K$ values at each chosen K_{1} between 0 and 401 .

[^0]mole ${ }^{-1}$ are given in Table 3. The mean deviation in K passes through a minimum and the corresponding K_{1} was taken as the correct value; for $\mathrm{Ni}^{2+}, K_{1}=20$; for $\mathrm{Mn}^{2+}, K_{1}=$ 15 ; and for $\mathrm{Co}^{2+}, K_{1}=0$. Calculation showed that these were also the best values at

Table 3.
Association constants at 25°.

K_{1}	Nickel		Cobalt		Manganese	
	$\overbrace{10^{-2} \mathrm{~K}}$	Dev. in K (\%)	$10^{-2} \mathrm{~K}$	Dev. in K (\%)	$\overparen{10^{-2} \mathrm{~K}}$	$\mathrm{Dev}^{\text {in }}$ ($\%$)
0	$2 \cdot 13$	12.5	1.65*	$3 \cdot 6$	1.79	$15 \cdot 6$
2	-	-	$1 \cdot 67$	$4 \cdot 5$	-	-
5	$2 \cdot 15$	9.6	1.72	$5 \cdot 4$	1.80	$10 \cdot 0$
10	$2 \cdot 17$	$6 \cdot 6$	1.79	$6 \cdot 6$	1.82	$4 \cdot 7$
15	$2 \cdot 19$	$3 \cdot 9$	1.85	$8 \cdot 8$	1.84*	$2 \cdot 2$
20	$2 \cdot 21$ *	$2 \cdot 3$	1.92	$10 \cdot 5$	1.86	5.5
25	$2 \cdot 23$	$2 \cdot 7$	1.99	$12 \cdot 1$	1.87	10.8
30	$2 \cdot 25$	$5 \cdot 3$	-	-	-	-
40	$2 \cdot 29$	$10 \cdot 4$	-	-	-	-

* K and K_{1} values adopted at 25°.
the other temperatures. The cobalt experiments were designed to limit the effect of MHA^{+}and it is seen that a zero concentration of this species gives the best constancy of K. By using the appropriate K_{1} values, K was evaluated at each temperature and

Fig. 2. Plots of $\log K$ against $T^{\mathbf{1}}$.

Fig. 1. Plots of X against Y.
Table 4 shows the very good constancy obtained. The values at 25° may be compared with those given by Davies; ${ }^{11} K(\mathrm{CoA})=2.7 \times 10^{2}, K(\mathrm{NiA})=2.46 \times 10^{2}$, and $K(\mathrm{MnA})=1.78 \times 10^{2}$. The agreement is very good except in the case of cobalt.

By using γ_{1} and γ_{2} at $I=0.2$ estimated from the activity coefficient expression, K^{1} values for manganese succinate, reduced to $I \longrightarrow 0$, become $K=200$ and $K_{1}=13$, in excellent agreement with 184 and 15, respectively, in Tables 3 and 4.

Plots of $\log K$ against T^{-1} in Fig. 2 show marked curvature and may be expressed, with an accuracy of 3% in K, by the equation $\log K=a+b T+c T^{2}$. Values of the parameters, evaluated as described previously, ${ }^{2}$ are given in Table 5. $\Delta G, \Delta H, \Delta C_{\mathrm{p}}$, and ΔS calculated from the equations $\Delta G=-\boldsymbol{R} T \ln K, \Delta H=2 \cdot 303 \boldsymbol{R} T^{2}(b+2 c T), \Delta C_{\mathrm{p}}=$ $4 \cdot 606 \boldsymbol{R} T(b+3 c T)$, and $\Delta S=(\Delta H-\Delta G) / T$, are given in Table $6 . \Delta C_{\mathrm{p}}$ is again seen to be subject to the greatest uncertainty. $-\Delta G$ is considerably smaller than for the
${ }^{11}$ Davies, Discuss. Faraday Soc., 1957, 24, 83.

Table 4.
Nickel succinate $\left(K_{1}=20 \mathrm{l} . \mathrm{mole}^{-1}\right)$.

Expt.	1	2	3	4	5	6	7	8
$10^{3} n_{1}$	$2 \cdot 64432$	$2 \cdot 89030$	2.61753	$2 \cdot 86422$	$5 \cdot 21511$	6.24147	$9 \cdot 15003$	11.7692
$10^{3} m_{2}$	$3 \cdot 48105$	$4 \cdot 24597$	2.22955	$3 \cdot 20346$	$7 \cdot 99195$	6.25450	$8 \cdot 58724$	9.92814
$10^{3} \mathrm{~m}_{3}$	3.97073	3.95576	$5 \cdot 08036$	$4 \cdot 26079$	$7 \cdot 24212$	$4 \cdot 26849$	$5 \cdot 61057$	$10 \cdot 62220$
Expt.	$E^{1}-E^{\circ}$	$10^{6}\left[\mathrm{H}^{+}\right]$	$10^{2} I$	$\begin{gathered} 10^{3}\left[\mathrm{HA}^{-}\right] \\ \mathrm{At} 0^{\circ} \end{gathered}$	$10^{+}\left[\mathrm{A}^{2-}\right]$	$10^{3}\left[\mathrm{M}^{2+}\right]$	$10^{4}[\mathrm{MA}]$	$10^{-2} \mathrm{~K}$
1	$0 \cdot 40142$	$6 \cdot 361$	1.548	1.458	7.863	3.712	1.954	1.76
2	$0 \cdot 41305$	3.874	1.642	1.319	11.824	$3 \cdot 643$	2.539	1.59
6	$0 \cdot 37687$	16.960	$1 \cdot 899$	$4 \cdot 014$	$8 \cdot 482$	3.896	1.855	$1 \cdot 64$
7	$0 \cdot 36519$	21.889	2.503	$5 \cdot 759$	10.055	$5 \cdot 031$	2.591	$1 \cdot 67$
8	$0 \cdot 34184$	33.181	4.038	6.832	8.913	$9 \cdot 628$	$\begin{aligned} & 3.519 \\ & \text { Mean } \end{aligned}$	1.71$1.67 \pm 0.05$
				At 15°				
3	$0 \cdot 37908$	29.899	1.732	1.616	$2 \cdot 072$	4.918	$0 \cdot 674$	1.87
4	$0 \cdot 40359$	13.155	$1 \cdot 589$	1.799	5-146	$4 \cdot 022$	1.507	1.98
5	$0 \cdot 42051$	$4 \cdot 211$	2.938	$2 \cdot 080$	21.512	6.366	$7 \cdot 376$	1.96
6	$0 \cdot 39479$	19.079	$1 \cdot 893$	4.032	$8 \cdot 267$	3.883	2.030	1.86
7	$0 \cdot 38238$	24.730	2.495	$5 \cdot 782$	$9 \cdot 767$	$5 \cdot 014$	$2 \cdot 798$	1.91
8	$0 \cdot 35768$	37-645	$4 \cdot 031$	6.859	8.649	$9 \cdot 617$	$3 \cdot 716$ Mean	1.93$1.92 \pm 0.04$
		$10^{5}\left[\mathrm{H}^{+}\right]$						
				At 25°				
1	$0 \cdot 43442$	0.737	1.538	1.648	0.758	$3 \cdot 689$	$2 \cdot 202$	$2 \cdot 15$
3	$0 \cdot 39088$	3.157	1.729	1.617	1.999	$4 \cdot 912$	$0 \cdot 752$	$2 \cdot 20$
4	$0 \cdot 41660$	1.373	1.585	1.805	5.030	4.014	1.595	$2 \cdot 18$
5	$0 \cdot 43388$	$0 \cdot 444$	2.910	$2 \cdot 083$	$20 \cdot 800$	6.297	8.085	$2 \cdot 28$
6	$0 \cdot 40734$	2.004	$1 \cdot 885$	$4 \cdot 043$	8.028	3.865	$2 \cdot 226$	$2 \cdot 15$
7	$0 \cdot 39441$	$2 \cdot 608$	$2 \cdot 484$	5.794	$9 \cdot 447$	$4 \cdot 989$	3.088	$2 \cdot 24$
8	$0 \cdot 36873$	3.994	4.019	6.861	8.322	$9 \cdot 589$	$\begin{aligned} & 4.087 \\ & \text { Mean } \end{aligned}$	${ }_{2.2127}^{ \pm} \pm 0.05$
				At 35°				
1	$0 \cdot 44860$	0.751	$1 \cdot 530$	1.472	$7 \cdot 366$	$3 \cdot 670$	$2 \cdot 395$	$2 \cdot 46$
3	$0 \cdot 40334$	$3 \cdot 260$	1.726	1.621	1.919	$4 \cdot 905$	$0 \cdot 821$	2.55
4	$0 \cdot 43000$	$1 \cdot 408$	1.579	1.811	$4 \cdot 863$	$4 \cdot 001$	1.737	2.51
5	$0 \cdot 44801$	$0 \cdot 453$	2.888	2.088	$20 \cdot 221$	6.243	$8 \cdot 649$	$2 \cdot 59$
6	$0 \cdot 42043$	$2 \cdot 056$	1.877	$4 \cdot 060$	$7 \cdot 767$	$3 \cdot 848$	$2 \cdot 413$	$2 \cdot 46$
7	$0 \cdot 40698$	$2 \cdot 685$	$2 \cdot 474$	$5 \cdot 816$	9.117	$4 \cdot 969$	$3 \cdot 324$	$2 \cdot 56$
8	$0 \cdot 38029$	4-141	4.008	6.877	7.982	$9 \cdot 565$	$\begin{aligned} & 4 \cdot 397 \\ & \text { Mean } \end{aligned}$	$2 \cdot 62$$2.53 \pm 0.05$
				At 45°				
1	0.46313	$0 \cdot 749$	1.522	1.478	$7 \cdot 134$	3.650	$2 \cdot 603$	$2 \cdot 82$
3	$0 \cdot 41617$	3.304	1.723	1.625	1.830	$4 \cdot 899$	0.895	$2 \cdot 98$
4	$0 \cdot 44374$	1.426	1.571	1.814	$4 \cdot 633$	$3 \cdot 980$	1.956	$3 \cdot 03$
5	$0 \cdot 46249$	$0 \cdot 456$	$2 \cdot 856$	$2 \cdot 093$	19.389	6.164	$9 \cdot 471$	3.05
6	$0 \cdot 43403$	$2 \cdot 069$	1.868	$4 \cdot 078$	$7 \cdot 469$	3.828	$2 \cdot 632$	$2 \cdot 85$
7	$0 \cdot 42011$	2.708	$2 \cdot 464$	$5 \cdot 842$	8.761	$4 \cdot 947$	3.569	$2 \cdot 93$
8	$0 \cdot 39235$	$4 \cdot 212$	3.996	6.892	$7 \cdot 608$	$9 \cdot 540$	$4 \cdot 737$	$3 \cdot 04$

Cobalt succinate ($K_{1}=0$)

Expt.	1	2	3	4	5	6
$10^{3} m_{1}$	$\cdots \cdots \cdots \cdots$	$4 \cdot 5096$	$5 \cdot 0085$	$\mathbf{3 \cdot 6 6 6 8}$	$3 \cdot 7054$	$\mathbf{3 . 8 5 9 6}$
$10^{3} m_{2}$	$\cdots \cdots \cdots \cdots$	$4 \cdot 5314$	$4 \cdot 8902$	$5 \cdot 1766$	$5 \cdot 1137$	$5 \cdot 0583$
$10^{3} m_{3}$	$\cdots \cdots \cdots \cdots$	$6 \cdot 5698$	$7 \cdot 0268$	$5 \cdot 4807$	$5 \cdot 8234$	$5 \cdot 9076$

Expt.	$E^{1}-E^{\circ}$	$10^{5}\left[\mathrm{H}^{+}\right]$	$10^{2} I$	10^{3} [HA^{-}]	$10^{3}\left[\mathrm{~A}^{2-}\right]$	10^{1} [MA]	$10^{-2} \mathrm{~K}$
At 0°							
1	$0 \cdot 36658$	1.757	$2 \cdot 446$	2.971	$0 \cdot 643$	1.465	$1 \cdot 15$
2	$0 \cdot 36272$	1.952	$2 \cdot 615$	$3 \cdot 282$	0.650	$1 \cdot 640$	$1 \cdot 23$
3	0.39994	$0 \cdot 505$	$2 \cdot 219$	1.877	1.381	$2 \cdot 711$	$1 \cdot 16$
4	$0 \cdot 39579$	$0 \cdot 569$	$2 \cdot 304$	1.968	$1 \cdot 296$	$2 \cdot 803$	$1 \cdot 23$
5	0.39025	$0 \cdot 710$	$2 \cdot 314$	$2 \cdot 202$	$1 \cdot 163$	2.688	$1 \cdot 29$
6	$0 \cdot 39012$	0.757	$2 \cdot 172$	2-178	1.063	2.285	1.24
						Mean	1.24 ± 0.04

7 G

Table 4. (Continued.)

Expt.	$E^{1}-E^{3}$	$10^{5}\left[\mathrm{H}^{+}\right]$	$10^{2} I$		$\left[\mathrm{HA}^{-}\right] 10$	$10^{3}\left[\mathrm{~A}^{2-} \quad 10\right.$	10^{\prime} [MA]	$10^{-2} \mathrm{~K}$
At 15°								
3	$0 \cdot 41944$	0.561	2.212		1.883	$1 \cdot 362$	$2 \cdot 880$	1.29
4	$0 \cdot 41502$	$0 \cdot 634$	$2 \cdot 297$		1.974	1.276	$2 \cdot 977$	$1 \cdot 36$
5	$0 \cdot 40924$	0.789	$2 \cdot 310$		$2 \cdot 211$	$1 \cdot 149$	2.782	$1 \cdot 39$
6	$0 \cdot 40877$	$0 \cdot 852$	$2 \cdot 161$		$2 \cdot 182$	1.033	2.562	$1 \cdot 47$
							Mean	1.37 ± 0.05
At 25°								
1	$0 \cdot 39599$	$2 \cdot 089$	$2 \cdot 433$		2.986	$0 \cdot 605$	1.787	$1 \cdot 56$
2	$0 \cdot 39183$	$2 \cdot 316$	$2 \cdot 603$		$3 \cdot 302$	$0 \cdot 614$	1.918	$1 \cdot 60$
3	$0 \cdot 43279$	$0 \cdot 590$	$2 \cdot 19$ t		1.884	$1 \cdot 316$	$3 \cdot 331$	1.58
4	$0 \cdot 42809$	$0 \cdot 670$	2.278		1.974	$1 \cdot 226$	$3 \cdot 472$	$1 \cdot 69$
5	$0 \cdot 42203$	0.837	$2 \cdot 291$		$2 \cdot 210$	$1 \cdot 101$	$3 \cdot 274$	1.75
6	$0 \cdot 42192$	$0 \cdot 891$	$2 \cdot 151$		$2 \cdot 187$	$1 \cdot 007$	2.799	$1 \cdot 69$
At 35°								
1	$0 \cdot 40864$	$2 \cdot 150$	$2 \cdot 426$		$2 \cdot 995$	$0 \cdot 584$	1.954	1.81
2	$0 \cdot 40426$	$2 \cdot 391$	$2 \cdot 595$		3.310	$0 \cdot 590$	$2 \cdot 121$	1.88
3	$0 \cdot 44678$	$0 \cdot 604$	$2 \cdot 177$		1.887	$1 \cdot 273$	3.752	1.89
4	$0 \cdot 44201$	$0 \cdot 684$	$2 \cdot 264$		1.978	$1 \cdot 191$	3-806	1.96
5	$0 \cdot 43564$	0.858	$2 \cdot 277$		$2 \cdot 215$	1.064	$3 \cdot 616$	2.05
6	$0 \cdot 43547$	0.916	$2 \cdot 137$		$2 \cdot 191$	0.972	3-140	2.01
At 45° (Mean 193 ± 007								
1	0.42137	$2 \cdot 202$	$2 \cdot 411$		$2 \cdot 990$	$0 \cdot 548$	$2 \cdot 338$	$2 \cdot 37$
2	$0 \cdot 41700$	$2 \cdot 436$	$2 \cdot 582$		3.310	2.559	$2 \cdot 437$	$2 \cdot 35$
3	$0 \cdot 46114$	$0 \cdot 610$	$2 \cdot 154$		1.889	1.215	$4 \cdot 321$	$2 \cdot 34$
4	$0 \cdot 45608$	$0 \cdot 694$	$2 \cdot 240$		1.979	1.130	$4 \cdot 405$	$2 \cdot 45$
5	$0 \cdot 44959$	$0 \cdot 868$	$2 \cdot 257$		$2 \cdot 217$	1.015	$4 \cdot 102$	$2 \cdot 50$
6	$0 \cdot 44945$	0.925	2.120		$2 \cdot 194$	0.928	$3 \cdot 562$	$2 \cdot 45$
Manganese succinate ($\left.K_{1}=15\right) \quad$ Mean $2-41 \pm 000$								
Expt.	1	2	3	4	5	6	7	8
$10^{3} m_{1}$..	$3 \cdot 87732$	3.58060	4•10579	3.73456	$3 \cdot 84355$	55 3.70642	$2 \quad 7 \cdot 12848$	-8.07886
$10^{3} m_{2} \ldots$	$2 \cdot 72403$	$3 \cdot 64612$	$3 \cdot 40891$	3.65978	4.42001	1 4-20629	9 8.56922	9-41907
$10^{3} m_{3} \ldots$	$4 \cdot 89358$	5.65596	4.90255	3.54878	$9 \cdot 83515$	$15 \quad 8 \cdot 44751$	$1 \quad 10 \cdot 28948$	$9 \cdot 68893$
At 0°								
1	$0 \cdot 35267$	4.096	1.731	$2 \cdot 201$	1.888	4.753	$0 \cdot 458$	1.41
2	$0 \cdot 37151$	1.620	$2 \cdot 060$	$2 \cdot 290$	5-182	$5 \cdot 438$	1.092	$1 \cdot 16$
3	$0 \cdot 36168$	$2 \cdot 822$	$1 \cdot 802$	$2 \cdot 537$	3-186	$4 \cdot 718$	0.777	$1 \cdot 45$
5	$0 \cdot 36559$	1.274	$3 \cdot 359$	$2 \cdot 285$	7.386	$9 \cdot 417$	$2 \cdot 523$	1.38
7	$0 \cdot 36851$	1.098	$3 \cdot 915$	$4 \cdot 151$	16.220	$9 \cdot 550$	$4 \cdot 460$	$1 \cdot 19$
8	$0 \cdot 36778$	$1 \cdot 200$	3.832	$4 \cdot 833$	17-188	8.948	$4 \cdot 194$	$1 \cdot 11$
At 15°								
1	$0 \cdot 36921$	4.617	1.730	2.213	1.838	4.752	$0 \cdot 476$	1.54
5	$0 \cdot 38291$	1.437	$3 \cdot 353$	$2 \cdot 293$	7.201	$9 \cdot 403$	$2 \cdot 686$	1.55
6	$0 \cdot 38621$	1.436	2.927	$2 \cdot 253$	6.825	$8 \cdot 075$	$2 \cdot 297$	1.52
7	$0 \cdot 38543$	1.264	$3 \cdot 882$	$4 \cdot 148$	$15 \cdot 407$	$9 \cdot 470$	$5 \cdot 332$	1.55
8	$0 \cdot 38453$	1.388	3.791	$4 \cdot 822$	16.211	8.848	$\begin{aligned} & 5 \cdot 278 \\ & \text { Mean } \end{aligned}$	$\begin{gathered} 1.54 \\ 1.54+0.02 \end{gathered}$
At 25° (Mean 1.54 ± 0.02								
1	$0 \cdot 38077$	4.869	1.729	$2 \cdot 218$	1.777	$4 \cdot 747$	$0 \cdot 532$	1.81
5	$0 \cdot 39468$	1.531	$3 \cdot 340$	$2 \cdot 292$	6.884	$9 \cdot 371$	3.029	1.88
6	0.39818	1.527	2.916	$2 \cdot 252$	6.539	$8 \cdot 046$	$2 \cdot 602$	1.83
7	$0 \cdot 39730$	$1 \cdot 348$	3.854	$4 \cdot 145$	14.718	$9 \cdot 402$	$6 \cdot 065$	1.90
8	$0 \cdot 39666$	1.463	3.773	$4 \cdot 832$	15.708	8.804	$5 \cdot 759$	$1 \cdot 78$
At 35° - Mean 1.84								
3	$0 \cdot 40296$	$3 \cdot 435$	1.795	$2 \cdot 570$	2.913	4.705	0.926	$2 \cdot 01$
4	$0 \cdot 42438$	2.066	1.424	$2 \cdot 471$	$4 \cdot 422$	3-349	$1 \cdot 246$	$2 \cdot 26$
5	$0 \cdot 40702$	1.592	$3 \cdot 327$	$2 \cdot 293$	$6 \cdot 566$	$9 \cdot 341$	$3 \cdot 356$	$2 \cdot 23$
6	$0 \cdot 41074$	1.581	$2 \cdot 905$	2.255	6.264	$8 \cdot 021$	$2 \cdot 872$	$2 \cdot 16$
7	$0 \cdot 41010$	1.383	3.839	$4 \cdot 161$	$14 \cdot 286$	$9 \cdot 368$	6.434	$2 \cdot 13$
8	$0 \cdot 40925$	1.511	3.751	$4 \cdot 843$	$15 \cdot 109$	$8 \cdot 752$	6.326	$2 \cdot 09$
							Mean	$2 \cdot 15 \pm 0.07$

Table 5.
Parameters for temperature-dependence of $\log K$.

	a	$-10^{2} b$	$10^{5} \mathrm{C}$
NiA	3.560	1.384	$3 \cdot 274$
CoA	6.041	3.255	$6 \cdot 615$
MnA	4.006	1.912	$4 \cdot 453$

corresponding malonate complexes ${ }^{1}$ owing to the lower stability of the seven-membered ring.
$\Delta S_{\text {hyd }}$ (MA) may be written:

$$
\Delta S_{\mathrm{hyd}}(\mathrm{MA})=\Delta S-\Delta S_{\mathrm{g}}+\Delta S_{\mathrm{hyd}}\left(\mathrm{M}^{2+}\right)+\Delta S_{\mathrm{nyd}}\left(\mathrm{~A}^{2-}\right)
$$

where ΔS_{hyd} and ΔS_{g} are hydration and gaseous entropies respectively. ΔS_{g} has been calculated as described previously, ${ }^{12}$ a planar model being used for the complex species.

Table 6. Thermodynamic properties.

Reaction	$\begin{gathered} \Delta H \\ \left(\text { kcal. } \mathrm{mole}^{-1}\right. \text {) } \end{gathered}$	$\begin{gathered} \Delta G \\ \text { (kcal. } \mathrm{mole}^{-1} \text {) } \end{gathered}$	$\begin{gathered} \Delta . S \\ \text { (cal. deg. } .^{-1} \text { mole }^{-1} \text {) } \end{gathered}$	$\begin{gathered} \Delta C_{\mathrm{p}} \\ \text { (cal. deg. }{ }^{-1} \text {) } \end{gathered}$
$\mathrm{Ni}^{2+}+\mathrm{A}^{2-}$	$2 \cdot 23 \pm 0 \cdot 2$	-3.20 ± 0.02	18.2 ± 0.7	42 ± 20
$\mathrm{Co}^{2+}+\mathrm{A}^{2-}$	2.81 ± 0.04	-3.02 ± 0.02	$19 \cdot 6 \pm 0 \cdot 1$	72 ± 20
$\mathrm{Mn}^{2+}+\mathrm{A}^{2-}$	2.95 ± 0.1	-3.09 ± 0.02	20.3	62 ± 15

Table 7.
Entropies (in cal. deg. ${ }^{-1}$ mole ${ }^{-1}$).

Ion pair	$S_{g}(\mathrm{MA})$	ΔS	$S^{\circ}(\mathrm{MA})$	$-\Delta S_{\text {hyd }}(\mathrm{MA})$	$r_{+}{ }^{-1}\left(\AA^{-1}\right)$
NiA $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$70 \cdot 6$	$18 \cdot 2$	$+1 \cdot 1$	69.5	$1 \cdot 37$
CoA $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$70 \cdot 6$	$19 \cdot 6$	$+3 \cdot 5$	$67 \cdot 1$	$1 \cdot 35$
MnA $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	70.5	$20 \cdot 3$	$+6 \cdot 2$	$64 \cdot 4$	$1 \cdot 28$

$\Delta S_{\mathrm{h} 5 \mathrm{~d}}\left(\mathrm{~A}^{2-}\right)$ was interpolated on a plot of ΔS_{hyd} of a number of bivalent anions against $r_{-}{ }^{-1}$, r_{-}having been calculated from the corresponding ionic mobilities. ${ }^{13}$ Entropies are summarised in Table 7. $\Delta S_{\text {hrd }}$ (MA) follow the order oxalate $>$ malonate $>$ succinate and may reflect an increasing polarity of the complexes accompanying reduced stability. The importance of using hydration entropies, and not entropies of association for correlation with $r_{+}{ }^{-1}$, is seen in Table 7; the two terms vary in opposite directions.

Heats of formation vary in the same sense as for the oxalates and malonates, in the reverse order to changes in ionisation potential I_{02}.

We thank the D.S.I.R. for a grant to A. McA., and Dr. V. S. K. Nair for assistance with some of the experimental work.

Chemistry Department, The University, Glasgow, W.2. [Received, April 13 h , 1961.]
${ }^{12}$ Nair and Nancollas, J., 1958, 3706.
${ }^{13}$ Jenkins and Monk, J., 1951, 68.

[^0]: ${ }^{8}$ Speakman, $J ., 1940,855$.
 ${ }^{9}$ Davies, J., 1938, 2093.
 ${ }^{10}$ Pinching and Bates, J. Iics. nal. Bur. Stand., 1950, 45, 322, 444.

